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Abstract

Developing new and more effective methods to achieve Q compensation is of priority

in seismic processing and exploration. We propose a new approach for Q compensation

as an isolated task subseries of the inverse scattering series(ISS).This inverse scattering

subseries achieves Q compensation without needing to know, estimate or to determine

Q. The method avoids the pitfall of an earlier ISS method by not needing or using

low frequency data and in particular not needing zero frequency data. This paper

provides two contributions (1) It develops a reformulated inverse scattering series(ISS)

Q compensation method without knowing or estimating Q and (most importantly)

without needing zero frequency data (2) It avoids a division by zero in the subsequent

reformulated algorithm by adding a small imaginary term to kz(adding a small amount

of friction in the reference medium).

In this paper, we test the Q compensation algorithm in a two-reflector model and

have obtained encouraging results. This advance in ISS Q compensation also has im-

mediate significant and positive consequence for all amplitude analysis (that currently

require low and zero frequency data) including ISS depth imaging, ISS direct param-

eter inversion, traditional iterative AVO and model matching FWI. In addition, the

ISS Q compensation without knowing or estimating Q method can be transferred for

electromagnetic applications where conductivity plays the role of Q, and a conductivity

map can be output.

Once the Q compensated data is available we could use that data together with the

original data to estimate Q. Alternatively, the anelastic equation and data could input

the original data and ISS inverted for elastic and Q parameters.
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1 Introduction

The presence of Q in the subsurface damages and reduces the resolution of seismic data.

The purpose of Q compensation is to recover from (and undo) the damage and produce a

data that has not experienced Q. In other words, for data experiencing loss with absorptive

media, data recovery means recover data from the loss due to Q. If we could estimate Q, we

can attempt to recover data as though it had experienced an elastic rather than an inelastic

subsurface with absorption. Many individuals have pursued that path. However, there is a

tremendous sensitivity to any inaccuracy in Q estimation. If the estimated Q is too large,

it can amplify noise. If the estimated Q is too small, it does not provide enough recovery.

Overall, its generous to say that that approach [estimating Q] has had, at best, a checkered

record of success. Hence, Q compensation remains an open and priority issue and seismic

processing challenge.

This paper is both inspired and motivated by the earlier important contribution of performing

Q compensation without knowing Q of Innanen and Lira (2010) and the linear antecedent by

Innanen and Weglein (2007). Within this paper, we will occasionally refer to those papers

for their extensive background references and certain mathematical detail found in their

appendices. We first review these two earlier papers. We then point out the specific absolute

data requirement, that is not able to be satisfied with field data(low and zero frequency

data), and hence precluded the method from becoming a useful practical algorithm. Next

we describe the several explicit advances in concept, method and subsequent new algorithms

(introduced and developed in this paper) that can be effective and practical on realistic

band-limited field data.

The previous ISS Q compensation algorithms (Innanen and Lira, 2010) without knowing

or estimating Q was the only Q compensation method at that time that did not require

a Q profile. However it required low frequency data and in fact critically depended upon

recording zero frequency data. The latter data requirement made that earlier approach

impractical.

In this paper, we propose a new approach for the ISS Q compensation task without knowing

or estimating Q, avoiding the pitfall of the earlier approach by deriving a new ISS Q com-

pensation subseries that does not require or use low frequency and zero frequency data. This
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new approach contains two contributions (1) reformulated the ISS Q compensation without

knowing or estimating Q algorithm to avoid needing and using zero frequency data, and

(2) avoided a division by zero in the reformulated algorithm by adding a small imaginary

number to kz, effectively placing absorption in the reference media. Those two contributions

lead to the first practical Q compensation method that does not require(or determine) any

knowledge of Q and is achievable with band limited seismic data.

2 A review of the previous ISS Q compensation without knowing

or estimating Q algorithm

The Inverse-Scattering-Series(ISS) allows all seismic processing objectives, such as free-

surface-multiple removal, internal-multiple removal, depth imaging, non-linear parameter 
estimation and Q compensation to be achieved directly in terms of data, and without any 
need to estimate or to determine subsurface properties. Weglein et al. (1997), Weglein et al.

(2003) introduce the concept of isolated task subseries of the ISS to achieve those specific 
tasks. The recent ISS Q (compensation) without Q (estimation) algorithm (Innanen and Lira, 
2010) provides a way to compensate Q in terms of only the data, without knowing, estimating 
or determining Q. This is a huge advantage especially for a complex subsurface where a Q 
profile is difficult or impossible to obtain. We will give a brief summary of their pioneering 
work.

Starting from a non-absorptive wave equation for the reference medium

[∇2 +
ω2

c20
]G0(x|xs : ω) = δ(x− xs) (1)

and a two-parameter (nearly constant Q) absorptive wave equation, where the physical

properties only vary in depth, x (Aki and Richards (2002))

[∇2 +K2]G(x|xs : ω) = δ(x− xs) (2)

where, K = ω
c(x)

[1+ F (ω)
Q(x)

] and F (ω) = i
2
− 1

π
ln( ω

ωr
) where c(x) is a spatially varying wavespeed

and ωr is a chosen reference temporal frequency. Innanen and Lira (2010) treat the quantity

in square brackets in equation 1 and 2 as the operators L0 and L, respectively. By defining

3



two perturbation quantities α(x) = 1 − c20
c2(x)

and β(x) = 1
Q

, they arrive at a perturbation

operator appropriate for this Q problem (for α << 1):

L0 − L ≈
ω2

c20
[α(x)− 2F (ω)β(x)] = V. (3)

Equations (1), (2) and (3) define the assumed physics model governing wave propagation in

this paper.

Following Weglein et al. (2003) we expand V as a series

V = V1 + V2 + V3 + · · · (4)

where Vn is the portion of V that is the nth order in the data. An inverse series for the

perturbation V in terms of α and β is

[α(z)− 2F (ω)β(z)] = [α1(z)− 2F (ω)β1(z)] + [α2(z)− 2F (ω)β2(z)] + · · · . (5)

The inverse solution (e.g. Weglein et al. (2003)) is generated by sequentially solving for

V and summing contributions to the perturbation in orders of data, D (where D is the

measured values of the scattered wavefield G−G0). At first order, from G0V1G0 = D for V1

we have

D(kz, θ) = − 1

4cos2θ

∫
dz′e−ikzz

′
[α1(z

′)− 2F (kz, θ)β1(z
′)] (6)

where the data D(xg, t), for one shot record, is first Fourier transformed over xg and t to find

D(kx, ω) [xg is the receiver coordinate and t is time]. Then changing variables and defining

kz ≡ 2qz = 2
√
k2 − k2x, with k = ω/c0 and qz = (ω/c) cos θ.

With the assumption that the data contains only primaries, Innanen and Lira (2010) found

a closed-form for a selected set of (partial) contributions to V = ω2

c20
[α(x) − 2F (ω)β(x)]

benefiting from an analogous ISS depth imaging subseries of Shaw and Weglein (2003) and

Shaw (2005)

αP (kz)−2F (kz, θ)βP (kz) =

∫
dz′e−ikz [z

′+ 1
2cos2θ

∫ z′
0 dz′′[α1(z′′)−2F (kz ,θ)β1(z′′)][α1(z

′)−2F (kz, θ)β1(z
′)]

(7)

where αP (z) =
∑∞

n=0 αn+1(z) and βP (z) =
∑∞

n=0 βn+1(z). The quantities αn and βn are the

contributions to α and β, that are nth order in the data D. F has been written as a function
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of the reference plane-wave variables θ and kz rather than ω (Please see (Innanen and Lira,

2010) appendix B for a detailed derivation). The goal of Innanen and Lira (2010) is to carry

out a single isolated task, that of compensation for Q, and to ultimately output data that

would not have experienced Q. The principle role of α1 in the argument of the exponential

is to nonlinearly accomplish aspects of the inversion associated with wave speed deviations

between the reference and actual media. Those tasks include internal multiple removal and

depth imaging and amplitude analysis.

The role of β in the forward series is responsible for all the Q effects on the data. Thus in the

inverse series, the β1 is responsible for Q compensation, or data recovery. More precisely, the

role of β1 in the inverse series is to accomplish aspects of the inversion associated with devi-

ations between reference (Q =∞) and actual Q values. Following this observation, Innanen

and Lira (2010) proposed an approximate form of Q compensation algorithm by isolating

terms in the inverse series that related to β1 (which is responsible for Q compensation) and

avoiding α1 only and α1 and β1 coupled terms, output (a leading order capture of isolated

β1 inverse series)

αQ(kz)− 2F (kz, θ)βQ(kz) =

∫
dz′e−ikz [z

′−F (kz,θ)

cos2θ

∫ z′
0 dz′′β1(z′′)[α1(z

′)− 2F (kz, θ)β1(z
′)] (8)

and the Q compensated data or recovered data is

Dcomp(kz, θ) = − 1

4cos2θ
[αQ(kz)− 2F (kz, θ)βQ(kz)] (9)

where the original input data is

D(kz, θ) = − 1

4cos2θ
[α1(kz)− 2F (kz, θ)β1(kz)]. (10)

More terms related to Q compensation could be isolated and more accurate algorithms

could be proposed in the future analogous to higher order ISS imaging subseries HOIS

(Liu et al., 2004; 2005b; Liu, 2006; Wang et al., 2010a;b; Wang and Weglein, 2011; Wang,

2012), that can accommodate larger 1/Q values and larger regions where Q 6=∞. Another

advantage of this algorithm is that it is formulated and operates in the data domain instead

of the model domain (similar to the ISS free-surface multiple elimination algorithm Carvalho

(1992), Weglein et al. (1997) and ISS internal multiple attenuation algorithm Araújo et al.
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(1994),Weglein et al. (1997),Weglein et al. (2003)) making the algorithm more robust to

noise and bandwidth issues.

However, similar to the ISS depth imaging subseries (Shaw, 2005; Weglein et al., 2003; Liu

et al., 2004; 2005a) the previous ISS Q compensation without knowing or estimating Q

algorithm (Innanen and Weglein, 2007; Innanen and Lira, 2010) has a practical issue and

shortcoming in that it requires low and zero frequency data which is not achievable with

field data.

In this paper a new starting point, and concomitant algorithm, specifically designed to

avoid the need for that unachieveable low and zero frequency data, is developed providing a

new and practical ISS Q compensation algorithm, without knowing or estimating Q, while

avoiding the pitfall of the earlier approach for ISS Q compensation. The new algorithm

provided in the next section of this paper does not require or use low frequency data and

has absolutely no interest in or need for zero frequency data. This new approach contains

two contributions (1) reformulated the ISS Q compensation without knowing or estimating

Q algorithm to avoid using zero frequency data, and (2) avoided division by zero in the

reformulated algorithm by adding a small imaginary number to kz. In the next section, we

will discuss the two contributions and advances in this paper, in detail.

3 Reformulating 1D prestack ISS Q compensation with-

out knowing or estimating Q and without using or

needing low/zero frequency data

As we discussed in the last section, Innanen and Lira (2010) provides an ISS Q compen-

sation without knowing or estimating Q algorithm for a 1D subsurface, with offset data,

and Innanen and Weglein (2007) provided the linear relationship and starting point. The

Q compensated data (Dcomp) which is the data without suffering Q, can be obtained by

compensating the data experiencing Q as following,

Dcomp(kz, θ) = − 1

4cos2θ

∫
dz′e−ikz [z

′−F (kz,θ)

cos2θ

∫ z′
0 dz′′β1(z′′)[α1(z

′)− 2F (kz, θ)β1(z
′)] (11)
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and the original data (D) experiencing Q is related to α1 and β1 by the following equation,

D(kz, θ) = − 1

4cos2θ

∫
dz′e−ikzz

′
[α1(z

′)− 2F (kz, θ)β1(z
′)] (12)

where α1 and β1 are linear approximations of (i.e. the portion that is linear in data) α =

1 − c20
c(x)2

and β = 1
Q

respectively. F (kz, θ) = i
2
− 1

π
ln(ω(kz ,θ)

ωr
) where ω(kz, θ) = − kzc0

2cosθ
and

the reference frequency ωr is a component of the A-D model, which in our numerical studies

we choose to be the highest frequency in a given experiment. D is the reflection data we

obtained from a subsurface with absorption, and the Dcomp is the data after Q compensation.

To calculate Dcomp, we need β1(z). Innanen and Weglein (2007) proposed and described in

detail how to estimate β1 as a function of pseudodepth z. Equation 10 can be rewritten as

follows,

α1(kz)− 2F (kz, θ)β1(kz) = −4cos2θD(kz, θ). (13)

To solve for β1, Innanen and Weglein (2007) use the data at two incidence angles, D(kz, θ1)

and D(kz, θ2), where θ = cos−1[kzc0/2ω], as follows

α1(kz)− 2F (kz, θ1)β1(kz) = −4cos2θ1D(kz, θ1) (14)

and

α1(kz)− 2F (kz, θ2)β1(kz) = −4cos2θ2D(kz, θ2) (15)

and then solve for β1. This result in

β1(kz) = 2
D(kz, θ2)cos

2θ2 −D(kz, θ1)cos
2θ1

F (kz, θ2)− F (kz, θ1)
. (16)

Similarly, we can solve equations (14) and (15) for α1. Then α1 and β1 can be used in

equation 9 for Q compensation. This is the previous ISS Q compensation without knowing

or estimating Q algorithm. However, as we mentioned, there is an issue in this earlier

approach. In equations (14) and (15) the solutions for α1(kz) and β1(kz) require knowledge

of data D(kz, θ) at kz = 0, which corresponds (for any fixed θ) to ω = 0. Furthermore in

equation 8, the integral of the β1(z
′′) (in the e exponential

∫ z′
0
dz′′β1(z

′′)) is very sensitive to

low and zero frequency in the data. Therefore, the zero kz value of β1 depends on the ω = 0

component of the data (D(kz, θ1) and D(kz, θ2)). The requirement of low and zero frequency

data made those earlier approaches impractical.

7



For prestack data, and an assumed one dimensional subsurface, β1 will be a one dimensional

function of kz and the data is a two dimensional function of (kz, θ). Thus there is one free

parameter in the data. Any choice of the free parameter will give a different β1, as it should,

and a different ISS Q compensation subseries will be responsible for Q compensation. We

reformulated the equations for calculating β1 from the kz, θ domain to the kz, kx domain.

Two kx values will solve for α1 and β1 and for each two specific values will have a different

solution for α1 and β1 and a distinct ISS Q compensation subseries. When kx is relatively

small, the reformulated equations will provide a similar α1 or β1 looking result as we can

obtain in the kz, θ domain. However, this reformulation will avoid the requirement of zero

frequency data in the previous algorithm for α1 or β1 and the subsequent Q compensation

subseries. If the selected kx values are not small the α1 and β1 will not provide a similar

appearing result as we obtain in the kz, θ domain (more detailed discussion in the appendix

B), a different subseries that is responsible for Q compensation (or ISS imaging for α1) needs

to be identified and isolated, which will be pursued and progressed in future work. Thus in

order to estimate β1, we reformulated equation 14 and 15,

α1(kz)− 2F (kz, kx1)β1(kz) = −4
q2z

q2z + k2x1
D(kz, kx1) (17)

and

α1(kz)− 2F (kz, kx2)β1(kz) = −4
q2z

q2z + k2x2
D(kz, kx2). (18)

Equation 16 becomes

β1(kz) = 2
D(kz, kx2)

q2z
q2z+k

2
x2

−D(kz, kx1)
q2z

q2z+k
2
x1

F (kz, kx2)− F (kz, kx1)
. (19)

Equation 19 uses data at two different kx values instead of data at two different angles.

Since ω/c0 =
√
k2x1 + q2z for D(kz, kx1) and ω/c0 =

√
k2x2 + q2z for D(kz, kx2), the kz = 0

component of β1 is no longer related to ω = 0 component of the data, thus avoiding the

pitfall of requiring zero frequency data (now the kz = 0 in β1 is related to ω/c0 = kx in the

data). That is, D(kx, ω) with kx = ω/c0 will provide the kz = 0 in β1(kz).

The Q compensation formula (equation 9) becomes,

Dcomp(kz, kx) = −1

4

∫
dz′

k2x + q2z
q2z

e
−ikz [z′−

(k2x+q
2
z)F (kz,kx)

q2z

∫ z′
0 dz′′β1(z′′)]

[α1(z
′)− 2F (kz, kx)β1(z

′)]

(20)

8



In equation 18, kz is no longer related to ω = 0. However, in the new reformulated ISS

Q compensation algorithm kz appears in the denominator and division by kz = 0 is not

defined. To avoid division by zero, we add a small imaginary number (adding a small

amount of friction in the reference) to kz so that the denominator will not be zero. This is

the second contribution in this work. Equations (17)-(20) provide the new and practical ISS

Q compensation algorithm that inputs data, D(xg, t), one shot record [for a 1D subsurface],

a data that has suffered damage due to absorption, and outputs a data Dcomp(xg, t) with the

damage due to Q removed. This algorithm is a first order inverse scattering subseries with

higher order subseries required for: (1) larger values of 1/Q and (2) cases where the region

that the data experiences Q is larger. Extensions for a multidimensional 2D and 3D acoustic

subseries are clear (and will be necessary) and further developments and contributions for

an anelastic multidimensional subsurface are planned.

There are positive benefits from the approach and contribution in this paper for all seismic

processing methods that currently require low and zero frequency data. Among the latter

methods are AVO, and non-linear iterative AVO, FWI and ISS direct depth imaging without

a velocity model. In particular the approach in this paper could be used in the ISS imaging

sub-series to avoid the need for zero frequency data. A discussion can be found in appendix

A.

There are two ways that the method described in this paper could be used to estimate Q: (1)

the relationship between Dcomp and D could be used to determine Q, and (2) a parameter

estimation series for β1, β2, β3, . . . could be computed to determine β(~r) =
∑
βi(~r) and Q.

Neither of these Q determination methods would require low or zero frequency data.

This new Q compensation method assumes that the input data consists of primaries, and

hence that the reference wave, all ghosts, and all multiples have been removed from the

recorded data. These event removal steps are essential prerequisites for this methodology.

In addition, the data used in this Q compensation algorithm, D(kx, ω), where for a fixed

kx we use the data such that ω ≥ kx to avoid evanescent waves. Evanescent waves are not

needed in this algorithm.

This advance in ISS Q compensation also has immediate positive and consequential im-

plication and application to electromagnetic (EM) probes, where EM target identification
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interests and activities would welcome determining a conductivity map. A conductivity map

can be used to separate brine water from hydrocarbons.

For example, the wave equation for the electric field in a conducting material is

∇2 ~E − µσ ~̇E − µε ~̈E = 0. (21)

A plane wave solution to the wave equation is

~E(~r, t) = ~E0e
j(ωt−~α·~r)e−

~β·~r (22)

where |~α| = ω
√
µε[1

2
+ 1

2

√
1 + σ2

ω2ε2
]1/2, β = ωµσ

2α
, σ is the conductivity of the material, µ is

the permeability and ε is the permittivity.

There is a similarity between the EM waves propagating in a conducting medium and the

seismic waves in an absorptive medium. The second exponential factor, e−
~β·~r, gives an

exponential decay in the amplitude of the wave. Therefore, the current Q compensation

method provided in this paper could also be used for EM waves in a conducting medium.

The ability to remove the effects of absorption and to enhance the high frequency components

of the data will improve the resolving power of a probing wavefield and, e.g., has the potential

to advance medical imaging and to aid early cancer detection.

4 A 1D prestack numerical test for ISS Q compensation without

knowing or estimating Q and without using or needing low/zero

frequency data

In this section, we test the new algorithm for a 1D prestack two reflector model as shown in

figure 1.

The data is generated analytically (only primaries) in the kz, kx domain, using the following

analytic form,

D(kz, kx) = R1(kz, kx)
eikzz1

ikz
+T01(kz, kx)R2(kz, kx)T10(kz, kx)

e
ikz(z1+

c0
c1

(z2−z1))e
i|kz |F (kz,kx)c0(z2−z1)

c1Q

ikz
(23)
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Figure 1: Model

where the reflection coefficients use the form in Innanen and Lira (2010),

R1(kz, kx) =
γ(kz, kx)

√
1− k2x/(k2x + k2z)−

√
1− γ2(kz, kx)k2x/(k2x + k2z)

γ(kz, kx)
√

1− k2x/(k2x + k2z)−
√

1− γ2(kz, kx)k2x/(k2x + k2z)
(24)

and

γ(kz, kx) =
c1
c0

[1 +
F (kz, kx)

Q
]−1 (25)

and R2 can be calculated similarly.

Figure 2 (left) shows the data from the model with Q, (middle) shows that data after being

processed by the new ISS Q without Q subseries, and (right) shows data from the model

that has no Q.

The single trace comparison of this new algorithm show an effective Q compensation without

knowing or needing Q and without low frequency data. Of course these results can be used
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Figure 2: Left: Data generated by the model with Q. Middle: The data (with Q) after

ISS Q compensation without knowing or estimating Q Right: Data generated by the same

model but without Q.

to estimate Q ( which can have its own value) once you know how data with Q would look

without Q.

Figure 3: One trace comparison. Red line: Data with Q. Green line: Data with Q after Q

compensation. Blue line: Data without Q
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Figure 4: One trace comparison magnifying the event in figure 3 between 3.2s-3.5s. Red line:

Data with Q. Green line: Data with Q after Q compensation. Blue line: Data without Q
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5 Conclusion

In this paper, we propose a new approach for the ISS Q compensation without knowing or 
estimating Q, avoiding the pitfall of the earlier approach and deriving a new ISS Q compen-

sation subseries that does not require or use low frequency data. This new approach contains 
two specific contributions (1) the reformulated ISS Q compensation algorithm without know-

ing or estimating Q avoids needing or using zero frequency data, and (2) the new method 
avoided a division by zero in the reformulated algorithm by adding a small imaginary number 
to kz. We also tested the algorithm in a two-reflector model and obtained an encouraging 
result. The reformulation idea in this paper could be transferred to all seismic amplitude 
analysis methods including: AVO and FWI, ISS depth imaging and ISS parameter estima-

tion methods to avoid the same serious issue and practical impediment of requiring low and 
zero frequency data. Applications beyond seismic exploration are discussed (e.g., improv-

ing the imaging resolution of EM exploration and the efficacy of medical imaging for 
early cancer detection) as well as plans for further seismic ISS Q compensation 
effectiveness and capability.

6 Acknowledgements

We are grateful to all M-OSRP sponsors for their encouragement and support of this research.

We thank Jim Mayhan and Chao Ma for their assist in preparing this manuscript.

14



Appendix A: Reformulation of α1 and α2 in the ISS imaging sub-

series

The ISS Q compensation algorithm [in this paper] is very similar and closely related to

the leading order ISS depth imaging subseries. The leading order and higher order ISS

depth imaging subseries (LOIS) and (HOIS) also depends on the low and zero frequency

components in the data. In Shaw (2005), the first term in the LOIS imaging subseries,

α1(z, p) = −8cos2θ

∫ ∞
−∞

e−ikz(2z−(zg+zs))D(kz, p)dkz (26)

where p = sinθ/c0, θ is the incident angle. The second term

α2(z, p) =
1

2cos2θ
(α2

1(z, p) + [

∫ z

0

α1(z
′, p)dz′]

∂α1(z, p)

∂z
) (27)

and all higher terms and the closed form of the ISS leading-order imaging subseries depend

on an integral of α1, and thus depends on the low and zero vertical wave numbers kz in α1.

According to equation 26, the low and zero vertical wave numbers of α1 depend on the kz = 0

component of data D(kz, p). For any p we choose, the kz = 0 component and is related to

the ω = 0 component of the data. As discussed in the last section, acquiring reliable zero

frequency data is impractical. In order to avoid this pitfall, we have to reformulate the

previous formula from the kz, p domain to a domain where kz = 0 is NOT related to ω = 0.

Luckily, when kx is relatively small, the data in the kz, kx domain is a good approximation

to data in the kz, p domain. Thus we can reformulate the algorithm in qz, kx domain, as

following, and the first term becomes

α1(z, kx) = −8

∫ ∞
−∞

q2z
k2x + q2z

e−iqz(2z−(zg+zs))D(kz, kx)dkz. (28)

The second term becomes,

α2(z, kx) =

∫ ∞
−∞

dkze
−2iqzz

∫ ∞
−∞

dz′e2iqzz
′ k2x + q2z

q2z
(α2

1(z
′, kx) + [

∫ z′

0

α1(z
′′, kx)dz

′′]
∂α1(z

′, kx)

∂z′
)

(29)

After reformulating the terms in qz, kx domain, qz = 0 is not related to ω = 0, since

ω/c0 =
√
k2x + q2z . This reformulation could be a new approach to avoid requiring zero

frequency data in the ISS imaging subseries.
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Appendix B: A numerical example for replacing D(kz, θ) by D(kz, kx)

when kx is not small

The following figure shows the numerical test for calculating α1 and α2 by replacing D(kz, θ)

by D(kz, kx) when kx is not small. The model contains two reflectors. If we use D(kz, θ), for

each θ, we will get a ”box” like result for α1, and the first term of α2 (or α21, for more detail,

see Shaw (2005)). However, when we replace D(kz, θ) by D(kz, kx) when kx is relatively big,

the shape of α1 and α2 changes (as shown in the following figure) and a different subseries

will be responsible for ISS depth imaging and Q compensation. Finding these subseries is a

part of our future plan. In our current work, we replace D(kz, θ) by D(kz, kx) with a small

kx and the current Q compensation subseries provides a good result.

Figure 5: Green line: α1, Blue line: the first term of α2(or α21), Red line: the second term

of α2(or α22),
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